fields and particles in particle physics
and in the standard model of particle physics:
matter field fermions (spinors, Dirac fields)
flavors of fundamental fermions in the standard model of particle physics: | |||
---|---|---|---|
generation of fermions | 1st generation | 2nd generation | 3d generation |
quarks () | |||
up-type | up quark () | charm quark () | top quark () |
down-type | down quark () | strange quark () | bottom quark () |
leptons | |||
charged | electron | muon | tauon |
neutral | electron neutrino | muon neutrino | tau neutrino |
bound states: | |||
mesons | light mesons: pion () ρ-meson () ω-meson () f1-meson a1-meson | strange-mesons: ϕ-meson (), kaon, K*-meson (, ) eta-meson () charmed heavy mesons: D-meson (, , ) J/ψ-meson () | bottom heavy mesons: B-meson () ϒ-meson () |
baryons | nucleons: proton neutron |
(also: antiparticles)
hadrons (bound states of the above quarks)
minimally extended supersymmetric standard model
bosinos:
dark matter candidates
Exotica
general mechanisms
electric-magnetic duality, Montonen-Olive duality, geometric Langlands duality
string-fivebrane duality
string-QFT duality
QFT-QFT duality:
effective QFT incarnations of open/closed string duality,
relating (super-)gravity to (super-)Yang-Mills theory:
Seiberg duality (swapping NS5-branes)
The nuclear matrix model (Hashimoto-Iizuka-Yi 10, Hashimoto-Matsuo-Morita 19) is a matrix model for baryons/nucleons in nuclear physics.
The model proceeds from the Witten-Sakai-Sugimoto model for QCD realized on intersecting D-branes, where baryons are embodied by wrapped D4-branes (“Witten’s baryon vertex”) on flavour D8-branes (D4-D8 brane bound states).
(graphics from Sati-Schreiber 19c)
Thus, encoding the D-brane dynamics of these D4-branes in a matrix model along the lines of the BFSS matrix model/BMN matrix model (for D0-branes) and the IKKT matrix model (for D(-1)-branes) leads to a matrix model for baryons and hence, potentially, for nucleons.
matrix models for brane dynamics:
D-brane | matrix model |
---|---|
D0-brane | BFSS matrix model, BMN matrix model |
D(-1)-brane | IKKT matrix model |
D4-brane | nuclear matrix model |
M-brane | matrix model |
---|---|
D2-brane | membrane matrix model |
See also:
Formulation of the model:
Review:
Further development:
Si-wen Li, Tuo Jia, Matrix model and Holographic Baryons in the D0-D4 background, Phys. Rev. D 92, 046007 (2015) (arXiv:1506.00068)
Koji Hashimoto, Yoshinori Matsuo, Takeshi Morita, Nuclear states and spectra in holographic QCD, JHEP12 (2019) 001 (arXiv:1902.07444)
Yasuhiro Hayashi, Takahiro Ogino, Tadakatsu Sakai, Shigeki Sugimoto, Stringy excited baryons in holographic QCD, Prog Theor Exp Phys (2020) (arXiv:2001.01461)
Computation of nuclear binding energies in the model:
Created on March 8, 2021 at 05:45:12. See the history of this page for a list of all contributions to it.